论文汇总¶
论文分类¶
Backbone¶
论文 | 年份 | 简介 |
---|---|---|
VGG43 | 2014.09 | VGG Net |
ResNet13 | 2015.12 | ResNet |
DenseNet44 | 2016.08 | DenseNet |
目标检测¶
论文 | 年份 | 简介 |
---|---|---|
YOLOv138 | 2015.6 | YOLOv1 |
YOLOv248 | 2016.12 | YOLOv2 |
YOLOv349 | 2018.04 | YOLOv3 |
YOLOv450 | 2020.04 | YOLOv4 |
DETR55 | 2020.05 | DETR,Transformer直接查询BBOX |
YOLOv5 | 2020.06 | YOLOv5 |
70 | 2020.08 | OBB对象检测 |
YOLOv651 | 2022.09 | YOLOv6 |
目标分割¶
论文 | 年份 | 简介 |
---|---|---|
FCN41 | 2014.11 | 全卷积网络,语义分割开山之作 |
关键点¶
论文 | 年份 | 简介 |
---|---|---|
61 | 2014.06 | 早期关键点检测工作 |
60 | 2019.08 | 两个步骤,一个是回归热图,一个是精修热图 |
59 | 2019.11 | 受FCOS启发,以做检测的思路来做关键点检测,直接回归关键点的位置 |
UNet系列¶
论文 | 年份 | 简介 |
---|---|---|
1 | 2015.05 | UNet开山之作,提出了包含编码路径和解码路径的U形网络 |
3D UNet2 | 2016.06 | 做了数据增强,尤其是弹性形变 |
UNet++17 | 2018.07 | 增加网络之间的连接节点 |
nnU-Net5 | 2018.09 | 主要做流程标准化及自动化 |
nnU-Net6 | 2019.04 | nnU-Net的第二篇论文,做了大量实验放了一些比赛结果来表明nnU-Net的有效性 |
37 | 2019.09 | 深度可分离卷积,做3D医学图像分割 |
\(U^2-Net\)16 | 2020.05 | UNet里套UNet |
15 | 2021.02 | CNN提底层特征,Transformer提上层远程特征 |
12 | 2021.10 | 通过大量消融实验来试,哪个效果好用哪个 |
UNeXt32 | 2022.03 | 加入MLP机制,减少参数提高效率 |
优化的nnU-Net28 | 2022.07 | 优化nnU-Net,通过大模型训练小模型,用上了未标注的数据集 |
Transformer系列¶
论文 | 年份 | 简介 |
---|---|---|
Attention is all you need18 | 2017.06 | Transformer的开山之作,发扬光大 |
VIT39 | 2020.10 | 第一次将纯Transformer用于图像分类 |
SwinTransformer42 | 2021.03 | Swin-Transformer |
Swin-UNet40 | 2021.05 | U型Transformer |
MaskFormer79 | 2021.07 | 把语义分割从像素级分类任务改成了mask级分割+分类任务 |
Mask DINO23 | 2022.06 | 基于Transformer的图片检测分割统一框架 |
81 | 2022.11 | TODO |
80 | 2023.09 | TODO |
82 | 2023.11 | TODO |
自监督、半监督、无监督¶
牙齿、颌骨检测¶
论文 | 年份 | 简介 |
---|---|---|
33 | 2021.02 | 类似CenterNet,通过损失函数惩罚解决牙齿重叠的问题 |
56 | 2022.05 | 基于YOLO V3的牙齿检测方法,单层检测牙齿然后算出来BBOX |
牙齿、颌骨分割¶
论文 | 年份 | 简介 |
---|---|---|
14 | 2019.07 | 牙齿分割,先检测牙齿边缘然后用于指导牙齿分割。此外,提出了相似性矩阵用于替代传统NMS来解决牙齿检测问题中不容易NMS的问题 |
8 | 2020.04 | 牙齿实例分割,主要工作是1、回归牙齿中心点用于指导牙齿定位 2、边界敏感的Dice Loss,优化边界的分割 |
11 | 2021.06 | 牙齿分割,类似8的思路,先回归牙齿的质心和牙齿的骨架,然后用于指导牙齿分割 |
10 | 2022.01 | 颌骨分割 |
3 | 2022.04 | 做了牙齿和颌骨分割 |
7 | 2021.07 | 下颌骨分割的论文综述 |
牙齿数据融合¶
论文 | 年份 | 简介 |
---|---|---|
66 | 2021.12 | CBCT和口扫模型(IOS模型)融合 |
4 | 2022.03 | CBCT和口扫模型(IOS模型)融合 |
损失函数¶
论文 | 年份 | 简介 |
---|---|---|
9 | 2020.03 | 主要用于血管等管状细小物体的分割的损失函数,可以提升分割稳定性和连续性,防止断裂 |
MONAI¶
论文 | 年份 | 简介 |
---|---|---|
UNETR31 | 2021.03 | U型的Transformer,Transformer提特征然后U型构建 |
SwinUnetr30 | 2021.11 | Transformer医学图像预训练 |
35 | 2022.09 | HECKTOR 2022第一名技术报告 |
数据集¶
论文 | 年份 | 简介 |
---|---|---|
68 | 2015 | SUN RGB-D |
3D点云¶
论文 | 年份 | 简介 |
---|---|---|
78 | 2008.09 | 点云对齐中使用的PFH特征 |
77 | 2009.08 | 点云对齐中使用的FPFH特征,78的延续工作 |
76 | 2015 | Open3d使用的RANSAC点云配置方法 |
72 | 2017.11 | 71从这里参考的回归角度任务设计成分类+回归的任务,这个又是参考的73 |
71 | 2019.04 | 3DETR参考的论文,主要是3D检测 |
57 | 2021.09 | 3DETR,DETR的3D点云版本 |
其他¶
论文 | 年份 | 简介 |
---|---|---|
73 | 2016.12 | 2D图片算3D BBOX,提出了把角度回归改成多个bin的分类+残差角度回归,后面的VoteNet、3DETR都是受他影响 |
69 | 2018.01 | 人脸识别的,ArcLoss |
19 | 2019.08 | 高分辨率的特征图,用于关键点、分割等下游任务 |
Wave2lip36 | 2020.08 | Wave2lip,语音驱动的任意人脸视频口型生成 |
53 | 2020.09 | 深度学习算法医学图像分割的一篇综述,基本涉及到了医学图像分割的方方面面 |
64 | 2020.12 | 抠图 |
63 | 2021.01 | 人脸关键点检测综述 |
65 | 2021.01 | 三维点云数据预训练及数据增强 |
22 | 2022.03 | 公开了一个高分辨率的分割数据集,包含5000张的数据 |
47 | 2022.03 | 医学图像自监督的工作,感觉比较偏理论,没有特别仔细看 |
58 | 2022.08 | 使用nnUNet分割了大量的器官,并提供python包方便使用 |
52 | 2022.09 | 医学图像炼丹trick避坑指南,做了大量对比实验验证医学图像分割中各种trick的效果 |
相关问题¶
牙齿检测中的NMS问题¶
牙齿由于比较密集,且空间形状和朝向较为复杂,使用简单的基于IOU的NMS难以达到很好的效果,NMS的阈值难以确定,针对这个问题目前看到两篇论文进行了尝试解决
- 14, 通过在训练过程中学习一个相似性矩阵来来学习牙齿之间的相似性,然后通过相似性矩阵来进行NMS
- 33,类似CenterNet的检测模型,通过损失函数惩罚高斯热图,引导网络使得检测到的牙齿之间不会重叠
TODO¶
-
U-Net: Convolutional Networks for Biomedical Image Segmentation ↩
-
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation ↩
-
A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images ↩
-
AI-enabled Automatic Multimodal Fusion of Cone-Beam CT and Intraoral Scans for Intelligent 3D Tooth-Bone Reconstruction and Clinical Applications ↩
-
nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation ↩
-
Automated Design of Deep Learning Methods for Biomedical Image Segmentation ↩
-
Automatic Segmentation of Mandible from Conventional Methods to Deep Learning—A Review ↩
-
Center-Sensitive and Boundary-Aware Tooth Instance Segmentation and Classification from Cone-Beam CT ↩↩
-
clDice:A Novel Topology-Preserving Loss Function for Tubular Structure Segmentation ↩
-
Deep Learning-Based Automatic Segmentation of Mandible and Maxilla in Multi-Center CT Images ↩
-
Hierarchical Morphology-Guided Tooth Instance Segmentation from CBCT Images ↩
-
ToothNet:Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images ↩↩
-
TransUNet:Transformers Make Strong Encoders for Medical Image Segmentation ↩
-
U2-Net:Going Deeper with Nested U-Structure for Salient Object Detection.md ↩
-
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.md ↩
-
Deep High-Resolution Representation Learning for Visual Recognition ↩
-
Focused Decoding Enables 3D Anatomical Detection by Transformers ↩
-
Mask DINO:Towards A Unified Transformer-based Framework for Object Detection and Segmentation ↩
-
Masked-attention Mask Transformer for Universal Image Segmentation ↩
-
MedSegDiff:Medical Image Segmentation with Diffusion Probabilistic Model ↩
-
OneFormer:One Transformer to Rule Universal Image Segmentation ↩
-
Polarized Self-Attention:Towards High-quality Pixel-wise Regression ↩
-
Revisiting nnU-Net for Iterative Pseudo Labeling and Efficient Sliding Window Inference ↩
-
Rich feature hierarchies for accurate object detection and semantic segmentation ↩
-
Swin UNETR:Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images ↩
-
Tooth Instance Segmentation from Cone-Beam CT Images through Point-based Detection and Gaussian Disentanglement ↩↩
-
CenterNet:Keypoint Triplets for Object Detection ↩
-
A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild ↩
-
3D U2-Net:A 3D Universal U-Net for Multi-Domain Medical Image Segmentation ↩
-
An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale ↩
-
Swin-Unet:Unet-like Pure Transformer for Medical Image Segmentation ↩
-
Swin Transformer:Hierarchical Vision Transformer using Shifted Windows ↩
-
Very Deep Convolutional Networks for Large-Scale Image Recognition ↩
-
DiRA:Discriminative, Restorative, and Adversarial Learning for Self-supervised Medical Image Analysis ↩
-
ACPL:Anti-curriculum Pseudo-labelling for Semi-supervised Medical Image Classification ↩
-
BoostMIS:Boosting Medical Image Semi-supervised Learning with Adaptive Pseudo Labeling and Informative Active Annotation ↩
-
YOLOv6:A Single-Stage Object Detection Framework for Industrial Applications ↩
-
Deep Learning for Medical Image Segmentation:Tricks, Challenges and Future Directions ↩
-
A Combined Approach for Accurate and Accelerated Teeth Detection on Cone Beam CT Images ↩
-
TotalSegmentator:robust segmentation of 104 anatomical structures in CT images ↩
-
Integrating Spatial Configuration into Heatmap Regression Based CNNs for Landmark Localization ↩
-
Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation ↩
-
Explicit Box Detection Unifies End-to-End Multi-Person Pose Estimation ↩
-
Self-Supervised Pretraining of 3D Features on any Point-Cloud ↩
-
Fully automatic integration of dental CBCT images and full-arch intraoral impressions with stitching error correction via individual tooth segmentation and identification ↩
-
Deep learning method for reducing metal artifacts in dental cone-beam CT using supplementary information from intra-oral scan ↩
-
ArcFace:Additive Angular Margin Loss for Deep Face Recognition ↩
-
Deep Hough Voting for 3D Object Detection in Point Clouds ↩↩
-
3D Bounding Box Estimation Using Deep Learning and Geometry ↩↩
-
Image-to-Image Translation with Conditional Adversarial Networks ↩
-
Aligning Point Cloud Views using Persistent Feature Histograms ↩↩
-
Per-Pixel Classification is Not All You Need for Semantic Segmentation ↩
-
Mask-Attention-Free Transformer for 3D Instance Segmentation ↩
-
OneFormer3D: One Transformer for Unified Point Cloud Segmentation ↩